Nucleocytoplasmic Oscillations of the Yeast Transcription Factor Msn2: Evidence for Periodic PKA Activation
نویسندگان
چکیده
At intermediate intensities, stress induces oscillations in the nucleocytoplasmic shuttling of the transcription factor Msn2 in budding yeast. Activation by stress results in a reversible translocation of Msn2 from the cytoplasm to the nucleus. This translocation is negatively controlled by the cAMP-PKA pathway through Msn2 phosphorylation. Here we show that the nuclear localization signal (NLS) of Msn2 is necessary and sufficient to promote the nucleocytoplasmic oscillations of the transcription factor. Because the NLS is controlled by protein kinase A (PKA) phosphorylation, we use a computational model to investigate the possibility that the cAMP-PKA pathway could function as an oscillator driving the periodic shuttling of Msn2. The model indicates that sustained oscillations of cAMP can indeed occur in a range bounded by two critical values of stress intensity, owing to the negative feedback exerted by PKA on cAMP accumulation. We verify the predictions of the model in mutants by showing that suppressing this negative-feedback loop prevents the oscillatory shuttling but still promotes the stress-induced nuclear localization of Msn2. The physiological significance of Msn2 oscillations is discussed in the light of the frequency encoding of cellular rhythms.
منابع مشابه
Stochastic modelling of nucleocytoplasmic oscillations of the transcription factor Msn2 in yeast.
Stress induces oscillatory nucleocytoplasmic shuttling of the transcription factor Msn2 in yeast. The subcellular localization of Msn2 is controlled by the cAMP-dependent protein kinase, PKA. Recent experimental observations corroborated by a deterministic computational model for the cAMP-PKA pathway in yeast suggest that the oscillatory dynamics of Msn2 results from the periodic activation of ...
متن کاملThe role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae
: In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of cell growth and proliferation in response to nutritional sensing and stress conditions. The pathway is tightly regulated by multiple feedback loops, exerted by the protein kinase A (PKA) on a few pivotal components of the pathway. In this article, we investigate the dynamics of the second messenge...
متن کاملOscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae
Msn2 and Msn4 are two related transcriptional activators that mediate a general response to stress in yeast Saccharomyces cerevisiae by eliciting the expression of specific sets of genes. In response to stress or nutritional limitation, Msn2 and Msn4 migrate from the cytoplasm to the nucleus. Using GFP-tagged constructs and high-resolution time-lapse video microscopy on single cells, we show th...
متن کاملA dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation.
In yeast, glucose depletion elicits a quick response in the transcription of stress-related genes. The main transcriptional activator that orchestrates this response is Msn2, whose nuclear localization and DNA binding are negatively controlled by the cAMP-dependent protein kinase (PKA). Msn2 activation by sudden glucose depletion correlates with a fast but transient decrease in phosphorylation ...
متن کاملLight-sensing via hydrogen peroxide and a peroxiredoxin
Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 17 شماره
صفحات -
تاریخ انتشار 2007